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LETTER TO THE EDITOR 

Cross-over to global adiabatics in 2~ ballistic transport 

L I Glazmant and M Jonson 
Institute of Theoretical Physics, Chalmers University of Technology, S-412 96 Goteborg, 
Sweden 

Received 9 June 1989 

Abstract. We introduce the concepts of local and global adiabatic regimes in quantum 
ballistic transport and discuss the cross-over between the two regimes. For a device consisting 
of micro-constrictions and wider 2D areas, local adiabatics leads to the absence of mode 
mixing at the constructions. Hence the conductance of a construction is quantised. Local 
adiabaticity is however not sufficient to ensure mode conservation in the entire device, i.e. 
to reach a global adiabatic regime. To achieve this a finite magnetic field has to be applied 
to the system. We have derived the necessary minimum strength of this field as a function of 
mode number and device geometry. As an example we discuss the manifestation of global 
adiabaticity in the Aharonov-Bohm effect. 

Recently developed [ 1,2] gate-controlled devices have for the first time made systematic 
studies of quantum transport in the ballistic regime possible. The key feature of the new 
devices basedon GaAs heterostructures is the scale of the active area, which is sufficiently 
small compared to the length of the electron mean free path. This leads to collision-free, 
ballistic electron transport. A negatively biased split-gate structure produces depleted 
regions whose boundaries serve as the walls of a ‘waveguide’ for electron waves. The 
geometry of these walls is obviously of great significance for the purely quantum- 
mechanical transport process, and their smoothness is an essential feature. The small 
curvature of the boundaries on the scale of the Fermi wave-length, AF, of the two- 
dimensional electron gas ( ~ D E G ) ,  is due to the remoteness of the gates (producing 
depletion) from the 2 DEG. Introducing a single parameter, R ,  to characterise the bound- 
aries by a radius of curvature, one has 

RIAF % 1. (1) 
Under this condition, an electron wave propagating through a gate-controlled channel 
does not experience backscattering from boundary inhomogeneities. Moreover, in a 
sufficiently narrow part of the channel (figure l), where 

d ( x )  < R (2) 
the scattering between different transverse modes is suppressed. One is therefore able 
[3] to use an adiabatic approximation for describing the propagation of electron waves 
through a gate-induced constriction [l, 21. For real gate geometries the condition (2) 
holds only on the scale 
t Permanent address: Institute of Microelectronics Technology and High Purity Materials, USSR Academy 
of Sciences, 142432 Chernogolovka, Moscow District, USSR. 
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Figure 1. Boundaries of an electron ‘waveguide’ (chain 
curves) and typical edge states (full curves) for an elec- 
tron in the presence of a magnetic field, B .  The largest 
curvature of the boundary is at the constriction (see 
enlargement). The system is in the local adiabatic regime 

d ,  of the constriction. The condition for global adia- 
baticity is discussed in the text. 

if the radius of curvature, R ,  is large compared to width, 

x < R  (3) 
where x is the distance from the narrowest part of the constriction. The adiabatic 
approach is therefore valid only locally. This is sufficient, however, as the conductance 
of a construction is determined by mode propagation on a scale [3] much smaller than 
R: 

x - d ( R d ( 0 ) ) .  (4) 

In the local adiabatic regime defined by equations (2)-(4) the geometry of a single micro- 
constriction determines its conductance, G, and causes [3] the step-like dependence on 
its width G = G(d).  

The adiabatic condition (2) breaks down at x - R where even the small-angle scat- 
tering compatible with (1) mixes different modes. Experiments on devices with several 
constrictions serving as ‘sources’ and ‘detectors’ of electron modes show without any 
doubt evidence of mode-mixing (among various experiments we should especially men- 
tion those of [4] together with the discussion in [ 5 ] ) .  Mixing of modes occurs not only in 
the absence of a magnetic field but also when a weak field is applied [6]. On the 
other hand, the anomalous quantum Hall effect observed in [7] demonstrates mode 
conservation over large distances, i.e. in an entire device. One concludes that a magnetic 
field may induce a cross-over from a local to a global adiabatic regime. 

In this Letter we develop an adiabatic approach to electron propagation through 
edge states formed by the magnetic field near a curved boundary. We determine the 
magnetic field B!loba’ necessary for cross-over to the global adiabatic regime and discuss 
the dependence of Biioba1 on the radius of curvature, R ,  and the mode number n. 

Electrons can be injected into the edge states of an active area through aconstruction. 
It is possible to prevent injection of a particular mode both by decreasing d(0)  and by 
increasing the magnetic field strength B. Hence the threshold valuye B, of the field that 
switches the nth mode off (or on) depends on the value of d(0) .  The possibility of 
tuning B, by changing the gate voltage that controls d(0 )  enables one to switch on the 
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propagation of a new mode either in the mode-mixing (B ,  < B$obai) or in the adiabatic 
(B,, > Biiobal) regime, thus providing a tool for experimental study of the cross-over to 
the global adiabatic regime. An an example, we discuss the corresponding implications 
for the Aharonov-Bohm (AB) effect in a two-point contact device. A more detailed 
account of this work will be published elsewhere [8]. 

Scattering between different transverse modes corresponds to a redistribution of 
energy between the transverse and longitudinal motion of an electron. Consequently, 
it leads to a change in the wavevector, k,,(x), of the longitudinal motion. The matrix 
elements mixing different modes are small if 

Ik,(x> - k,.,(x)lR 1 ( 5 )  
where R determines the length scale for spatial variations of the channel boundaries. 
Without a magnetic field the difference between k,(x) and k,,, l(x) is only due to the 
finite width of the conducting channel and is of order l / d ( x ) .  Hence ( 5 )  is violated for 
x B R. In the presence of a magnetic field a new length scale, the radius of the cyclotron 
orbit, r,enters the problem. When r, < d ,  i.e. for sufficiently strong magnetic fields, the 
difference in wavevectors between two states of different modes at the Fermi surface 
will be of order l / r c ,  hence finite even for a half-space where d-, x. This is due to the 
formation of edge states. In the presence of a magnetic field, the centre of the cyclotron 
orbit, yn ,  for a system bounded in they direction is an exact constant of motion [9]  if the 
boundary is straight (x-independent). Each filled mode has an occupied edge state at 
the Fermi level, for which 

k ,  = (eB/cfi)y, .  ( 6 )  
The energy of an eigenmode, E,,, depends on mode number, n,  and ony,, (see e.g. [lo]). 
For states at the Fermi surface the position of the orbit centre is determined by the 
equation 

If the boundary differs from a straight line, e.g. has a step-like shape, y ,  is no longer a 
good quantum number and inter-mode transitions occur. However, if the curvature, 
R-l, that characterises this step is small enough, then even the most probable transitions 
between adjacent modes are suppressed. We shall now proceed to derive a more explicit 
criterion than ( 5 )  for adiabatic propagation in an edge state. 

First we determine the adiabatic solutions to the Schrodinger equation in the presence 
of a magnetic field. Neglecting the small spin splitting, the orbital part of the Hamiltonian 

Ei = - ( f i2 /2m)  [ a 2 / a y 2  + (a /ex - i e ~ y / c f i ) ~ ] .  (8) 

Y n b , Y )  = A.(x)g,.(x,y) (9)  

- (fi2/2"*/ay2 - [W) - eB/cfiyI2)g, .(x,y) = E,g,,,(x,y) 

g,n(x,Y)Iy=f(x) = Q ) n ( X ,  Y ) l y + m  = 0. 

The adiabatic wavefunction that corresponds to the nth mode has the form 

where q , ( x ,  y )  satisfies the one-dimensional boundary value problem 

(10) 

The boundary conditions in (10) correspond to a constant electrostatic potential within 
the channel and an infinitely steep potential at the boundary, y = f(x) (a 'hard' wall). 
We believe this to be a good approximation (see [8, 11,  121. The eigenvalue E,, in (10) 
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depends parametrically on k(x) andf(x). The function k = k,(x) for a given mode n is 
determined by an obvious analogue of (7 ) .  

The longitudinal part of the adiabatic wavefunction, A&) of (9), is 

A,(x) = exp (i 1' k,(x,) dx, ) .  (11) 

Because of the x-dependent boundary condition for q n  in (lo), the adiabatic 
wavefunctions Yn of (9) are not exact solutions of the Schrodinger equation. However, 
we can use them as an orthogonal basis set for an expansion of the true wavefunction 

In this spirit of scattering theory, the wavefunction of (9) with a particular mode index 
n can be regarded as an incident wave propagating from the left (x = - CO) where initially 
cl(x = - w) = in (12). Then the set of coefficients cl(x = w) with 1 # n determines 
the amplitudes an/ for scattering to other modes. Inserting (12) into the Schrodinger 
equation and hence deriving a set of equations for c,, one readily proves that the only 
sources for scattering are the spatial derivatives dq, /dx,  and d2qn /dx2 .  One finds 

a2cl 
ax2 

-- 

The quantities ylm(x)  in (13) are matrix elements of y with respect to the wavefunctions 
q l ( x ,  y ) .  Because of the smoothness of the boundary, y = f(x), on the scale of the Fermi 
wavelength, AF = 2z/kF, only the second term on the left-hand side of (13) needs to be 
retained. The remaining first-order differential equation can easily be solved. The result 
for 1 # n is 

an[ C/(X-+ m) = exp[i(k, - k,)x]  dx. 
-Lc 

Here k, - kl is independent of x and the coefficients afll and Pnl are x-independent 
combinations of matrix elements involving q l  [8]. The simple estimate a = P= kFis valid 
for almost all possible values of n. The spatial derivative df(x)/dx in (14) is dimensionless 
and depends on the shape of the boundary. The most natural way to characterise the 
boundary is by single parameter, R. The implication is that the variation is smooth but 
by no means small. As an illustration we shall evaluate (14) using a function that models 
a step-like boundary 

af(x)/ax = exp[-(x/R)']. (15) 

The largest scattering amplitudes, a,/, occur for scattering into adjacent modes, 
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1 = n f 1. In the adiabatic regime of interest, these amplitudes should be small and one 
arrives at the following estimate for the scattering amplitudes 

a n , n i l  21 exp[ln(kFR) - Q(eBR/ch)2(Y, - Y ~ ? I ) ~ ] .  (16) 

We recall that the quantum numbers y n  in (16) are determined by (7) for a straight 
boundary. Now we use (7)  and (16) to estimate the magnetic field, B$lobal, that determines 
the cross-over to the global adiabatic regime for the nth mode. Consider first skipping 
orbits in the weak magnetic field limit, where in the quasi-classical approximation 

y ,  = - [I1 - {[3n(n - 4)/4q/2] (B/B*)}2'3] r, n = 1 , 2 , 3 . .  .. (17) 

Here r, denotes the cyclotron radius at the given field, B ,  and B* = chk$/2e is a 
characteristic value of the magnetic field, related to the depopulation of the Landau 
levels, We determine the value of the field B$Iobal that marks the cross-over to the global 
adiabatic regime ( B  > B;lobal) by requiring the argument of the exponential in (16) to 
be zero 

B$oba'/B* == O.~~[~~(~KR/I~F)]~'~(I~F/R)~'~ fi. (18) 
It follows that the higher the mode number, n ,  the higher the magnetic field must be to 
reach the global adiabatic regime. Our assumption of a smoooth boundary guarantees 
that the factor & on the right-hand side of (18) is multiplied by a small coefficient. A 
typical value for the Fermi wavevector is [l, 21 IzF -- 400 A. The radius of curvature R 
can be estimated [13] as half the width of the lithographic gap of the split gate, R = 0 . 2 ~  
[l, 21. Hence B;lobal/B* -- 0. l&. The mode number n in (18) should definitely be 
smaller than the full number of occupied Landau levels, around B*/B. Consequently 
there exists a characteristic integer value N R ,  

nR = Int{(R//ZF) [0.23 ~ ( ~ J ' C R / ~ F ) ] - ~ / ~ }  (19) 

such that for all n > nR the threshold value necessary for global adiabatics is the same 
one 

Bgloba'/B* = [0.23 ~~(~zR/A,)]'/~(A,/R). (20) 
It is obvious that (18) and (20) match at n = nR. 

If 1/R is the largest curvature of the boundary in an active area, then a field larger 
than Bglobal of (20) is definitely sufficient to secure adiabatic transport in all edge states 
that exist in this area. The population of these states is therefore not changed as electrons 
propagate through the active region and is determined only by the source injecting the 
carriers. The advantage of gate-controlled devices is that the gate bias defines both the 
active area and the point contacts serving as injectors. These point contacts have the 
form of micro-channels connecting the active area with the ZD leads. The tunable 
character of the contacts and the local adiabatic conditions in their vicinity [3] makes it 
possible to control the number of modes in the active region that are in contact with the 
leads. For a sufficiently narrow channel this number obviously can be made smaller than 
nR given by (19). Under these conditions even a field smaller than Bglobal of (20) will be 
sufficient to maintain global adiabatic conditions in the whole active area. Actually for 
global adiabaticity (18) needs to be satisfied for the propagating mode with the highest 
mode number (due to the monotonic dependence of B$lobal on n in (18)). On the other 
hand the number of propagating modes can be restricted both by shrinking the width, 
d = d(O), of the micro-channel and by applying a magnetic field, B .  So, to determine the 
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set of parameters, (d ,  B ) ,  where global adiabaticity holds for a device of the type shown 
in figure 1, we have to determine the switching-off condition for a mode. 

The boundaries of a channel lift the degeneracy of the Landau levels produced by a 
magnetic field and broaden each of them into a band. For boundaries of sufficiently large 
radius of curvature, R 4 d ,  the threshold value, B,, when the constriction becomes 
opaque to all states in a band, can be determined [13] from the condition 

E , ( B ,  d )  = EF. (21 )  
Here E,@, d )  is the minimum energy in the nth band for an electron in a condition 
channel of constant width d. To determine the bands one can use (10) with a constant 
wavevector k and boundary conditions q,(y = 0) = q n ( y  = d )  = 0. Depending on the 
ratio 2rc/d the band energies are determined mostly by either spatial or magnetic 
quantisation. For a wide channel (or a strong magnetic field), where d / 2  > rc,  the 
boundaries change the energy of a Landau level only slightly. This is because only the 
exponentially small ‘tails’ of the wavefunction in the classically forbidden regions are 
affected. Treating them in the WKB approximation one finds small corrections to the 
bulk energy caused by the boundaries. After straightforward calculations [8] starting 
from (21 )  one finds for a mode-separating line, B,(z), the following parametrical descrip- 
tion: 

B*/B,  + 1 = n + (1/n) exp[-(2n - l)g(u)] (22)  
where the function g is 

g = u V u 2  - 1 - In(u + V u 2  - 1) U = ( n / 4 )  [ z / (n  - a)]. (23)  
In f 2 2 )  and (23 )  we have used the convenient dimensionless units z = k ,d /n  and B*/B 
related to the experimentally controlled parameters d and B. 

In the opposite limit of a narrow channel (or a weak magnetic field), d / 2  < rc, the 
eigenvalues E,  are determined mainly by spatial quantisation. The magnetic field merely 
adds small corrections which can be calculated by standard perturbation theory [ 131. 
One finds 

( n / ~ ) ~  + & J C ~ ( B , / B * ) ~ Z ~  = 1. (24 )  
Equation (24 )  indicates that the mode-separating lines in the (B* /B ,  z )  plane asymptot- 
ically tend to z = n as B+ 0, i.e. B*/B+ =. 

The results in the two limiting cases discussed above match quite well in the inter- 
mediate region, d / 2  = r,. Mode-separating lines in the dimensionless coordinates 
B * / B  and z are plotted in figure 2.  Using (18) and (20 )  we have also marked the cross- 
over field B:loba1 by the broken curve in figure 2 .  From the figure it is obvious that 
depending on the particular value of z ,  i.e. gate voltage, we can switch on a new mode 
by varying B either in the mode-mixing regime (to the right of the broken line in figure 
2 )  or in the global adiabatic regime. 

The two regimes mentioned above can be directly distinguished in an experiment 
with a device of the shape [14] sketched in figure 1. For particular values of ( z ,  B*/B)  
close to the mode-separating lines an oscillatory pattern emerges in the field-dependent 
conductance G(B)  due to the Aharonov-Bohm (AB) effect. If global adiabaticity holds 
then only a single mode contributes to the oscillations which consequently have a well 
defined period. In contrast to the original AB effect the electrons are moving in a region 
of finite magnetic field. Therefore the magnetic flux enclosed by the electron orbit is 
determined by the field not only directly in the usual fashion but also indirectly via the 
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Figure 2. Mode-separating lines for modes n = 2- 
5 .  The broken curve marks the cross-over from 
mixed-mode propagation in weak fields (above 
and to the right of the broken line) to a global 
adiabatic regime without inter-mode scattering in 
relatively strong fields (below and to the left of 
the broken line). The curve was plotted for the 
realistic parameters R = 0.2 pm, LF = 400 A but 
is not universal. This gives experimental freedom 
to shift it relative to the mode-separating lines 
which are universal when plotted in the dimen- 
sionless variable used here. 

Figure 3. Corrections to the ‘geometrical’ value 
for the period of Aharonov-Bohm oscillations, 
A B ,  formodesn = 2-5. Thepresent result, A B  = 
(2nti/c)[S - LW(B)]-’ depends on both n and B. 
For each mode n the function W = W,,(B) has a 
minimum (marked by an arrow). 

field dependence of the area, S e f f ,  encircled by the orbit. The AB period can be expressed 
as 

AB = ( 2 n ~ h / e ) [ d ( B S ~ ~ ~ / d B ] - ~  Sef f  = S - L ( Y ~  + rc)* (25)  

Here S and L are the area and perimeter length of the cavity in figure 1. Equation 
(25) contains deviations from the geometrically determined period, 2nch/eS. These 
deviations can be described by a quantity W,(B) of dimension length: AB = 
(2ncfi/e)[S - LW,(B)]-’. Forthecalculationof W,(B) wecanagainusethe WKBapproxi- 
mation (see [8] for details). Due to the distinct features of W,(B) displayed in figure 3 
the dependence of AB on B can be used as an indication of global adiabatic transport. 

The field-induced cross-over to the global adiabatic regime has implications also for 
several other phenomena. Here we shall only mention the anomolous quantum Hall 
effect [7] and the suppression of Shubnikov-de Haas oscillations [6]. 

We thank J E Mooij, C D W Wilkinson and C J P M Harmans for stimulating discussions 
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